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Abstract. Two methods are proposed for aggregating the scores of
reviewers in a peer-reviewing rating system. Both methods are of a
statistical nature. The simpler method, which is based on a classical
statistical approach from the field of linear models, uses the analysis
of variance and can thus be realized by means of existing statistical
software. The more advanced method, which is a slight modification
of the method proposed by Roos et al. [13], uses a nonlinear model
and numerical optimization based on a least-squares approach. Un-
der reasonable statistical assumptions, both approaches—the linear
and the nonlinear one—can be seen as using the maximum likeli-
hood principle. Application of either method implies also an evalu-
ation of the reviewers. An application example with real conference
data shows the power of the statistical methods, compared with the
common naive approach of simply taking the average scores.

1 Introduction

Evaluation of persons, papers, products, etc. is a fundamental social
activity. For example, students are evaluated by teachers,scientific
papers by journal/conference reviewers, and sportsmen by referees,
e. g., in figure skating and gymnastics. Even if all reviewersin a rat-
ing system are subjectively fair, some of them may be biased and pro-
duce scores systematically too high or too low. If then not all objects
are reviewed by all reviewers, it becomes complicated to aggregate
the scores given to the same objects in a fair way.

The present paper focuses on the problem of ranking scientific
papers submitted to conferences, where usually the relative num-
ber of reviews per paper is small. The common procedure applied
by popular conference management systems such as EasyChair6 and
ConfMaster7 is described as (quoting from the EasyChair website):
“When computing the average score, weight reviews by reviewer’s
confidence.” This means that all scores given to a paper are sim-
ply averaged, possibly weighted by reviewer-specific weights, the
confidence levels of the reviewers, which again are very subjective
because every reviewer evaluates only him- or herself. Under these
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conditions it may happen that by good luck a weak scientific paper
goes to some lenient or generous reviewers, whereas a good paper
goes to a harsh reviewer and some normal reviewers. Then the weak
paper might be accepted, but the good one is rejected.

The present paper aims to improve the common “naive” (as Lauw
et al. [9] call it) approach where the overall scores of all objects
are obtained by simply averaging all given scores of the object. Of
course, paper scores can only provide some guidance on paperaccep-
tance; the final decision is usually made on deeper considerations.

It is assumed here that external information about the reviewers
is not used, such as weighting the scores. There is also no separate
“training” phase in order to characterize the reviewers’ tendencies.
Instead, the proposed methods apply cross-classification techniques
to determine the characteristics of both the reviewers and the judged
objects simultaneously in one step. All reviewers are assumed to be
“honest,” to exercise their best judgments, without any personal rela-
tion to certain objects. Nevertheless, some reviewers may be biased
in giving systematically high or low scores. As long as all papers are
evaluated by all reviewers, this is not an obstacle to fair score ag-
gregation by averaging. However, if there are only a few reviews per
paper, problems are likely to arise. The following toy example taken
from [8] shows what can happen.

Example 1 Consider the data in Table 1. There are five reviewers
(r i) and five papers (pj ). The original scores yi j from [8] are here
multiplied by10 and are thus in the range from 0 to 10. Consisting
of only15scores in total, this data set is very small.

Table 1. Data for a toy example taken from [8].

p1 p2 p3 p4 p5
r1 6 6 6 – –
r2 3 – – 4 –
r3 3 – – – 4
r4 – 3 3 4 4
r5 – 3 3 4 4

The naive approach results in the same average score of4.0 for
all five papers. This seems to be highly questionable: in their pre-
liminary discussion, Lauw et al. [8] point out that reviewerr1 is very
likely to be lenient, causing too high aggregated scores forpapers p1,
p2, and p3. In Section 2.2, this example is to be continued to show
the results that can be obtained by means of statistical methods.

Related Work

Preference aggregation is a wide field that has been intensely studied
by various scientific communities, ranging from multiagentsystems



to computational social choice. The topic of this paper—aggregating
the scores in reviewing scientific papers—has also been investigated,
although from other angles and using different methods. Forexam-
ple, Douceur [4] encoded the aggregation problem into a correspond-
ing problem on directed multigraphs and focuses on rankings(i. e.,
ordinal preferences) rather than ratings (i. e., cardinal preferences ob-
tained by assigning review scores). By contrast, Haenni [6]presents
an algebraic framework to study the problem of aggregating individ-
ual scores.

The present paper uses methods of analysis of variance from the
field of statistics, see [7]. The setting is calledtwo-way classifica-
tion there, where one “way” relates to reviewers and the other to pa-
pers. This classical statistical approach from the field of linear mod-
els is adapted here. This leads to fairer overall scores for the papers,
where “fairer” in a technical sense refers to the fact that the proposed
method leads to unbiased estimators for certain model parameters
(see Section 2.2 for details). At the same time in parallel, the method
also allows for an evaluation of the reviewers.

The papers by Lauw et al. [8, 9] tackle the same problem as
the present paper, yet with quite a different approach. Theyapply
a so-called “differential model,” which is an ad-hoc nonlinear model.
Their model includes an unknown model parameterα, which ap-
pears not to be statistically estimable. No random errors occur in this
model, although in real review processes such effects are well con-
ceivable to play a role.

We will first present the simple linear approach in Section 2.2. It
can be realized by existing statistical software. This approach is then
refined in Section 2.3 by a nonlinear method, which applies tech-
niques from quadratic programming. Under some statisticalassump-
tions, both approaches—the linear and the nonlinear one—can be
seen as using the maximum likelihood principle.

The nonlinear model is inspired by a solution to the offline
synchronization problem in broadcast networks, as discussed by
Scheuermann et al. [14]. In that work, the problem of synchroniz-
ing timestamps in a set of event log files is addressed, where each
log file has been generated with a different, potentially deviating,
local clock. “Reviewers” in the present paper take the role of “net-
work nodes” there, the role of “papers” here corresponds to “network
packet transmissions” there, and “review scores” here are in line with
“reception timestamps” there. However, the setting and assumptions
in Scheuermann et al. differ in some central aspects. In particular,
random packet reception time delays, which correspond to random
components in review scores, follow exponential distribtions and are
not Gaussian. More technically, the resulting optimization problem
is linear in [14], while it is (semi-definite) quadratic here.

There is a significant body of existing work in the area of prefer-
ence aggregation, i. e., on the question how to aggregate individual
preferences into a common, global ranking. Some of these works use
related estimators in different settings. For example, Conitzer and
Sandholm [3], Conitzer, Rognlie, and Xia [1], and Xia et al. [18, 17]
apply maximum likelihood estimation to model the “noise” invot-
ing. Relatedly, Pini et al. [12] study the issue of aggregating partially
ordered preferences with respect to Arrovian impossibility theorems.
However, their framework differs from the model used here: they
consider ordinal preferences, whereas peer-reviewing is commonly
based on scores, i. e., on cardinal preferences. Note that cardinal pref-
erences are more expressive than ordinal preferences, as they also
provide a notion of distance.

2 Models

2.1 Basic Assumptions

In the reviewing process considered, reviewers not only comment on
the weaknesses and strengths of the papers, but give a score to each
paper reviewed. The following analysis focuses on only the scores.
These scores are assumed to be integers, to which situation most eval-
uation processes can be transformed, even if decimal numbers with
one or two decimals are given. High scores mean good quality.

There areI reviewersr i andJ papersp j . For each pair(i, j), there
exists a binary numberei j , whereei j = 1 means that reviewerr i re-
views paperp j , andei j = 0 otherwise. The matrix(ei j )1≤i≤I ,1≤ j≤J
is calledincidence matrix. Let E = {(i, j) |ei j = 1}. The scores cor-
responding to pairs(i, j) ∈ E are denoted byyi j .

2.2 The Linear Model

Adapting the classical statistical linear modeling approach, the fol-
lowing model is used:

yi j = D
(

µ +αi +β j + εi j
)

for (i, j) ∈ E. (1)

Here,D is a discretization operator that transforms any real number
x into the integer scoreD(x). The other symbols have the following
meanings:

• µ is the overall mean of all scores given,
• αi is the mean difference between the scores of reviewerr i andµ,
• β j is the mean difference between the scores of paperp j andµ,
• εi j is a random error for(i, j) ∈ E.

Theαi are closely related to the “leniencies” of reviewers discussed
by Lauw et al. [8, 9], and theβ j to their paper “qualities.” The idea
is that reviewerr i does not assign a score to paperp j based on its
true quality β j (which r i does not know), but based onr i ’s own
noisy view of p j ’s quality, which isβ j + εi j . This judgment is then
linearly shifted according to the reviewer’s “leniency”. Simplifying
more general models, it is assumed that there is no interaction be-
tween reviewers and papers (which, if desired, could be expressed
by parameters(αβ )i j ).

The strategy in the following is to ignore the discretization in the
statistics and to assume that the discretized data belong tothe truly
linear model

yi j = µ +αi +β j + εi j for (i, j) ∈ E. (2)

with
Eεi j ≡ 0 and var εi j ≡ σ2 for (i, j) ∈ E, (3)

where theεi j are independent andE andvar denote the expectation
and variance, respectively. The error of this simplified approach will
be discussed in the full version of this paper.

Model (2) is calledtwo-way classificationin the analysis of vari-
ance, see, e. g., the book by Draper and Smith [5].

As mentioned above, the naive estimators of the sumsµ +β j , here

denoted byµ̂ +β j , are the averages of all review scores assigned to
the respective paper:

µ̂ +β j = y∗ j =
1

n∗ j
∑

i:(i, j)∈E

yi j , (4)

wheren∗ j is the number of reviews for paperp j . No serious statisti-
cian will use them, since these estimators are not unbiased and better
estimators are possible.



Theory says that only the differences of the effectsαi andβ j can
be estimated without bias. Fortunately, for the problem of ranking
papers it completely suffices to have estimates of the differencesβ j −
β1. And for evaluating the reviewers, estimates of the differences
αi −α1 are fully sufficient. Thus, one may assume that

I

∑
i=1

αi = 0 and
J

∑
j=1

β j = 0. (5)

In many statistical textbooks such as [5] and [15], it is assumed
that for each pair(i, j) a fixed, strictly positive numbern of observa-
tions is given (where, in typical settings,n≫ 1). If so, least-squares
estimates ofµ, αi , andβ j are easy to determine. They directly follow
from the means

y∗∗ =
1
IJ

I

∑
i=1

J

∑
j=1

yi j , yi∗ =
1
J

J

∑
j=1

yi j , and y∗ j =
1
I

I

∑
i=1

yi j

asµ = y∗∗, αi = yi∗−y∗∗, andβ j = y∗ j −y∗∗. These estimators are
unbiased. In this case, the naive approach is the best. However, in the
situation typical for peer reviewing, the “observation” countsni j are
0 (revieweri does not review paperj) or 1 (revieweri reviews pa-
per j). (Note thatni j = 2 would mean that revieweri reviews paper
j twice, independently.) We are confronted with a so-called “incom-
plete” (and “unbalanced”) experimental design. The corresponding
theory is described by Koch [7, Sections 3.4.2 and 3.4.3]. The case
of interest here is there referred to astwo-way cross-classification.

The parameters are estimated by the least-squares approach, i. e.,
the sum over all

(yi j −µ −αi −β j )
2

is minimized. To this end, Koch [7] describes numerical approaches
based on normal equations. Standard statistical software offers vari-
ous ways to obtain estimators of theαi , theβ j , and ofµ, which differ
in the so-called reparametrization conditions.

The model varianceσ2 is estimated by the mean squared error,
which is the sum of quadratic deviations(yi j − ŷi j )

2 with ŷi j =

µ̂ + α̂i + β̂ j divided by their number minus one. The estimators ob-
tained are unbiased and in some sense “best.” In the case of normally
distributedεi j , the least-squares estimators are also maximum likeli-
hood estimators.

For the practical statistical analysis, the statistical software pack-
age IBM-SPSS Statistics 20 (which we abbreviate by SPSS), proce-
dure UNIANOVA, was used. The procedure UNIANOVA does not
use the conditions (5), but it is preset such thatαI andβJ are set to
zero in the model discussed here.

Alternatively, also the program that will be mentioned in the next
section (see Algorithm 1) can be used by settingγi = 1 in (6) below,
which leads to (1). Both programs yield identical results.

The parameters determined by SPSS can easily be transformed
into the parametersµ, αi , andβ j . Simulations and direct calculation
of model parameters are easily possible based on the matrix module
of SPSS.

Example 2 (continuing Example 1) Table 2 shows the values for
the parameters in the linear model; the parameterµ is estimated
as4.0. The model parameters indicate that reviewer r1 indeed has to
be considered as lenient, while the other reviewers are estimated to
have the same degree of rigor. The papers are now divided intotwo
classes: p1, p2, and p3 seem to be weaker papers with lower scores,
while the other two papers appear to be of the same higher quality.
It cannot surprise that Lauw et al. [8] arrive at the same conclusions
for this extremely simple example.

Table 2. Parameters for the toy example from [8].

i, j αi β j
1 2.4 −0.4
2 −0.6 −0.4
3 −0.6 −0.4
4 −0.6 0.6
5 −0.6 0.6

Note that in the example above, the estimated parameter values
exactly reproduce the scores from Table 1 when used in (2) with all
εi j = 0. Essentially, this means that no random deviations at all are
necessary to “explain” the reviewers’ scores. Therefore, this example
has to be considered extremely simple.

2.3 The Nonlinear Model

The linear model from the previous section is now refined to a nonlin-
ear model, which modifies the method proposed by Roos et al. [13]
so as to generalize (1) to

yi j = D
(

µ + γi(αi +β j + εi j )
)

for (i, j) ∈ E (6)

with positive parametersγi . For the special case ofγi ≡ 1, (6) co-
incides with (1). The termγi(αi + β j + εi j ) models the interaction
between reviewerr i and paperp j ; γi is a proportionality factor; and
µ, αi , β j , andεi j have the same meaning as in the linear case.

Reviewerr i ’s perceived, noisy quality levelβ j + εi j is, just like
in the linear model, added to this reviewer’s systematic bias αi . In
addition, though, the result is transformed by multiplication with the
reviewer-specific scaling factorγi . This factor modelsr i ’s individual
rigor: in essence,γi describes by how much revieweri’s review score
changes, given a fixed change in (perceived) paper quality.

Even though this nonlinear model is relatively simple, it allows to
capture a wide range of reviewer characteristics.

An assumption similar to∑I
i=1 αi = 0 in the linear case (see Sec-

tion 2.2) is now done by

αI = 0. (7)

This leads to a problem slightly smaller than that with∑I
i=1 αi = 0.

Both restrictions are possible and plausible, and the results can sim-
ply be transformed to each other by choosing a suitable parameterµ.
The aim is to estimate the parametersαi , β j , γi , andµ. Again the
least-squares approach is used, which minimizes the sum of squared
errorsεi j ,

∑
(i, j)∈E

(

yi j

γi
−

µ
γi
−αi −β j

)2

. (8)

Since this does not affect the optimization itself, in this setting µ
can be set to zero. After getting the result, one may shift thevalues
so that a condition like∑J

j=1 β j = 0 as in (5) is fulfilled. It is easy to
see that the resulting parameter estimators are maximum likelihood
estimators if the errorsεi j are i. i. d. Gaussian as in (3).

Numerically, the minimization procedure is carried out by means
of a direct optimization program such as a so-called quadratic pro-
gram, see, e. g., the book by Nocedal and Wright [11]. In general, a
quadratic program(QP) is an optimization problem of the form:

minimize
1
2

xTQx+cTx (9)

subject to Ax≥ b, (10)



where (lettingQ denote the set of rational numbers)x ∈ Qn, Q ∈
Qn×n, c ∈ Qn, A ∈ Qm×n, andb ∈ Qm. The solution of a QP is a
vectorx that minimizes the expression in (9), simultaneously fulfill-
ing all constraints in (10).

With the simple substitutioñγi = 1/γi in (8) one obtains

∑
(i, j)∈E

(

yi j γ̃i −µγ̃i −αi −β j
)2

, (11)

which can be transformed into the form of a QP as required by (9)
and (10). In the following, the estimators ofαi , β j , andγ̃i are denoted
by α̂i , β̂ j , and γ̂i . With respect to the QP discussed so far, note that

a trivial solution can be achieved by settingγ̂i , α̂i , and β̂ j each to
zero, which clearly is not reasonable. Assuming typical reviewers to
be “rational”, one may require the normalization constraint:

1
I

I

∑
i=1

γ̂i = 1. (12)

Defining a vectorx =
(

β̂1, . . . , β̂J, γ̂1, . . . , γ̂I , α̂1, . . . , α̂I

)T
, con-

taining the variables to estimate, one obtains the QP:

minimize
1
2

xTQx (13)

subject to Ax≥ b

with a square matrixQ (see lines 2–13 of Algorithm 1 below), and a
matrixA representing the normalization constraint (12).

A QP with a positive definite matrixQ has a unique solution and
can be solved in polynomial time using interior-point methods, see,
e. g., [16]. In this specific QP, the matrixQ is at least positive semi-
definite, i. e., all eigenvalues ofA are nonnegative, because it can be
written asH ·HT (see Algorithm 1 below for the definition of ma-
trix H). Analogously to the linear model in Section 2.2, one does
not have any global, absolute “reference” to which the overall scores
could be adjusted. This leads to an additional degree of freedom in
the optimization, which precludes obtaining a unique maximum. In
fact, a similar issue also occurred in the work of Scheuermann et
al. [14], and along similar lines as there it is easy to overcome: one
may setαI = 0, thus using one reviewer as a “fixed” reference point.
In this paper, the last reviewer is picked for this constraint, see Equa-
tion (7). Yet, also with this modification it isstill possible to come
up with pathological instances where the solution is not unique. This
lies in the nature of the problem: For instance, it is impossible to
compare the relative “rigor” of two groups of reviewers, if there is
no paper that has been reviewed by at least one reviewer out ofeach
of the two groups. In general, such ambiguities are easily identified
and can always be resolved by introducing additional constraints as
needed (or, alternatively, by assigning additional reviews). This then
yields a positive definite matrixQ and consequently a unique solu-
tion of the QP.

To solve the resulting QP, one can use existing solvers such as
MINQ [10], a MATLAB script for bound constrained indefinite
quadratic programming. Algorithm 1 illustrates this approach. The
scoresyi j for (i, j) ∈ E are assumed to be nonnegative for line 5 to
work. Any negative number (e. g.,−1) at position(i, j) in the in-
put matrixM indicates that reviewerr i did not review submissionp j
(i. e., (i, j) 6∈ E). M thus encodes bothE and the review scoresyi j .

Note that the resulting estimated scores inβ̂ may exceed the interval
of the input scores. This can, however, be overcome by subsequently
scaling to results as desired, as discussed above; this yields the scaled
score estimates, in the following denoted byβ ∗

j , for all submissions.

Algorithm 1 Computing the estimated scores

1: Input: M ∈Qm×n // M contains the given scores.
2: H =

[

0
]

∈Q(2m+n)×(m·n)

3: for j ∈ {1,2, . . . ,m} do
4: for k∈ {1,2, . . . ,n} do
5: if M( j,k) ≥ 0 then
6: H(k,(k−1)·m+ j) = 1
7: H(n+ j,(k−1)·m+ j) = −M( j,k)
8: H(n+m+ j,(k−1)·m+ j) = 1
9: end if

10: end for
11: end for
12: remove the last row fromH // normalization
13: Q = 2·H ·HT

14: h1 =
(

0 · · · 0
)

∈Qn

15: h2 =
(

1 · · · 1
)

∈Qm

16: h3 =
(

0 · · · 0
)

∈Qm−1

17: A =

[

h1
1
m ·h2 h3

h1 − 1
m ·h2 h3

]

18: b =

(

1
−1

)

19: solve: min 1
2xTQx subject toAx≥ b

20: β̂ =
(

x1 · · · xn
)T

21: Output: β̂ ∈Qn

3 A Case Study

The following discusses data from theThird International Workshop
on Computational Social Choice(COMSOC-2010) that took place in
September 2010 in Düsseldorf, Germany [2]. There were 57 submis-
sions (where submissions that had to be rejected on formal grounds
are disregarded) and 20 reviewers. Every submission was reviewed
by at least two reviewers; a third reviewer was assigned to some sub-
missions later on, and one paper was even reviewed by four review-
ers. (The fact that these extra reviews were somehow relatedto the
evaluation of the papers in the first two reports is ignored inthe fol-
lowing.) Table 3 shows the data, the results of the reviewingprocess.
It contains the scores given by the reviewers to the papers, where
“–” means “no review.” As is common in EasyChair, the scores were
integers between−3 and 3, which are here shifted to the integers
between 1 and 7, where 7 is the best possible score.

Table 4 shows the main results of applying the methods proposed
in this paper to real conference data: the estimated COMSOC-2010
paper scores obtained by the two approaches presented here,which
are closely related to theβ j . The acceptance threshold of the con-
ference was around 4.5, based on the naive approach. This led to
acceptance of a total of 40 submissions, while 17 were rejected.

Table 5 shows the parametersαi and γi of the reviewers, which
allow to evaluate them as well. This is simpler in the linear than in
the nonlinear approach. According to the linear approach, reviewer
7 with α7 = 2.3662 is the most lenient reviewer. In the nonlinear
approach, the relatively large value ofγ7 = 6.1283 also leads to high
review scores even if the paper quality is only moderate. By contrast,
reviewer r19 with α19 = −0.8523 (in the linear model) has some
tendency of being harsh. The parameters in the nonlinear approach,
α19 = −0.6411 andγ19 = 1.8889, allow for a more differentiated
representation of this reviewer’s mapping of paper qualityto review
score.

The differences in modeling and reducing reviewer bias between
the approaches results in different paper rankings. Consider, for ex-



Table 3. Input data from the review process for COMSOC-2010. The
scores of 20 reviewers for 57 papers are shown. (Note that thedata matrix
given here is transposed compared with Table 1.) The papers are ordered

with respect to their rank obtained by the naive approach.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
p1 − − − − − − − − − − 7 − − − 7 − − − − 7
p2 7 − − − − − − − − 7 − − − − − − − − − −
p3 − − − − − − − − − − 7 − − − 7 − − − − 7
p4 − − − − − − − − − − − − 7 − − 7 − − − −
p5 − 7 − − − − − − − − − − − 6 − − − − − −
p6 − − − − − − − − − − − 7 − 6 − − − − − −
p7 − − − − − − − − − 7 − − − − 6 − − − − −
p8 − − − − − − − − − − − − 7 − − − − − 6 −
p9 − − − − − − − − − − − − − − 7 − − − − 6

p10 − − − − 6 − − − − − − − − − − 7 − − − −
p11 6 − − − − − − − − − − 7 − − − − − − − −
p12 7 − − − − − − − − 6 − − − 6 − − − − − −
p13 − − − − − − − − − − − − − − 7 − − − 5 −
p14 6 − − − − − − − − − − − − − − − − 6 − −
p15 − 6 − − − 6 − − − − − − − − − − − − − −
p16 − 6 − − − − − − − − 6 − − − − − 6 − − −
p17 − − − − − − 6 − − 6 − − − − − − − − − −
p18 − − − − − − − − 6 − − − − 6 − − − − − −
p19 6 − − − − − − − − − − − − − 6 − − − − −
p20 − − − 6 − − − − − − − − − − − − 6 − − −
p21 − − − − 6 − − − − − − − 6 − − − − − − −
p22 − − 6 − − − − − − − − − − − − − 6 − − −
p23 − − − − 5 − − − − − − − − − − − − − 7 −
p24 7 − − − 5 − − − − − − − − − − − − − − −
p25 − − − − 5 − − − 6 − − − − − − − − − − −
p26 − − − 6 − − 5 − − − − − − − − − − − − −
p27 − 6 5 − − − − − − − − − − − − − − − − −
p28 − − − − − − − 5 − 6 − − − − − − − − − −
p29 − − − − − − − − − − − 5 − − − 6 − − − −
p30 − − 6 − − − − − 5 − − − − − − − − − − −
p31 − − − − − − − 5 − − − − − − − 6 − − − −
p32 − − − − − 5 6 − − − − − − − − − − − − −
p33 − 5 − − − − − 6 − − − − − − − − − − − −
p34 − − − 5 − − 6 − − − − − − − − − − − − −
p35 − − − − − − − 5 6 − − − − − − − − − − −
p36 − − − − − − − − − − − − − − − − − 5 − 6
p37 − − − − − − − − 5 − − − 5 − − − − − − −
p38 − − − − − 7 − − − − 5 − − 3 − − − − − −
p39 − − − − − − − − − − 7 − − − − − − − 3 4
p40 − − − − − − − − − − − − 5 − − − − − − 4
p41 − 4 − 5 − − − − − − − − − − − − − − − −
p42 − − − − − 4 − − − − 3 − − − − 6 − − − −
p43 − − − − 5 − − − − − 3 5 − − − − − − − −
p44 − − 4 − − 6 − − − − 3 − − − − − − − − −
p45 − − − − − − − − − − 2 5 − − − − 5 − − −
p46 − − 3 − − 6 − − − − − − − 3 − − − − − −
p47 − − − − − − 3 − − − − − − − − − − 4 − −
p48 − − − 5 − − − 2 − − − − − − − − − − − −
p49 − − − − − − − − 5 − − − − − − − − − 2 −
p50 − − − − − − − − − − 3 − 4 − − − 3 − − −
p51 − 1 − − − − 7 − − − − − − − − − 1 4 − −
p52 − − − − − − − 4 − 2 − − − − − − − − − −
p53 − − 3 − − − − − − − − − − − − − − 3 − −
p54 − − − − − − − 3 − − − − − − − − − 3 − −
p55 − − − 2 − − − − − − − − − − − − − 3 − −
p56 − − − − − − − − − − − 1 − − − 2 − − − −
p57 − − − − − − − − − − − − − − − − 1 − 1 −

Table 4. The scores in all three approaches. Theβ j in the linear approach
are shifted byµlin = 0.6698 and the nonlinearβ j by µnonlin = 2.8864 in

order to achieve the same average scores as in the naive approach. Note that
this means a slightly modified righthand side in (5).

Number of Naive approach Linear model Nonlinear model
paper score rank score rank score rank

1 7.000 1 7.557 1 6.549 7
2 7.000 2 6.831 8 6.132 15
3 7.000 3 7.557 2 6.549 8
4 7.000 4 6.315 15 7.538 2
5 6.500 5 7.305 3 6.230 13
6 6.500 6 6.815 9 6.957 5
7 6.500 7 6.602 10 5.150 29
8 6.500 8 7.195 4 7.229 3
9 6.500 9 6.965 6 6.477 10

10 6.500 10 6.249 17 7.651 1
11 6.500 11 6.123 19 6.352 11
12 6.333 12 6.588 12 6.179 14
13 6.000 13 6.891 7 6.482 9
14 6.000 14 5.552 28 5.913 19
15 6.000 15 5.697 25 5.194 28
16 6.000 16 6.598 11 5.462 22
17 6.000 17 5.124 33 5.078 31
18 6.000 18 6.528 13 6.550 6
19 6.000 19 5.989 20 4.922 34
20 6.000 20 5.783 24 5.039 32
21 6.000 21 6.303 16 7.205 4
22 6.000 22 6.483 14 5.227 25
23 6.000 23 7.130 5 6.323 12
24 6.000 24 6.228 18 5.931 18
25 5.500 25 5.846 22 5.971 16
26 5.500 26 4.162 43 4.719 36
27 5.500 27 5.964 21 5.218 26
28 5.500 28 5.509 31 5.456 23
29 5.500 29 4.644 38 4.405 47
30 5.500 30 5.687 26 4.806 35
31 5.500 31 4.917 34 5.210 27
32 5.500 32 4.095 46 4.550 39
33 5.500 33 5.791 23 5.660 21
34 5.500 34 4.162 44 4.513 43
35 5.500 35 5.514 30 5.962 17
36 5.500 36 5.527 29 5.784 20
37 5.000 37 4.911 35 4.691 37
38 5.000 38 5.243 32 4.999 33
39 4.667 39 5.644 27 5.444 24
40 4.500 40 4.769 36 5.089 30
41 4.500 41 4.264 41 4.647 38
42 4.333 42 3.796 47 4.507 44
43 4.333 43 4.668 37 4.532 41
44 4.333 44 4.271 40 4.204 50
45 4.000 45 4.349 39 4.544 40
46 4.000 46 4.136 45 4.434 45
47 3.500 47 3.718 48 4.183 51
48 3.500 48 2.344 54 4.247 48
49 3.500 49 3.047 49 3.855 53
50 3.333 50 2.936 51 4.235 49
51 3.250 51 3.009 50 4.515 42
52 3.000 52 4.238 42 4.430 46
53 3.000 53 2.903 52 3.614 55
54 3.000 54 2.729 53 3.649 54
55 2.500 55 1.702 56 2.973 56
56 1.500 56 0.644 57 −3.745 57
57 1.000 57 2.034 55 3.962 52



Table 5. The reviewers’ parameters. Note that the zeros in theα columns
of the last row result from the normalization according to (7).

Numberi Linear model Nonlinear model
of reviewer αi αi γi

1 0.9511 4.0540 0.9190
2 0.1620 −0.7132 3.0569
3 0.2494 0.3388 2.1501
4 1.6499 1.3767 1.7379
5 −0.0676 10.3078 0.3896
6 1.7839 0.2520 2.7372
7 2.3662 −0.7730 6.1283
8 0.5962 0.9447 1.4482
9 0.7156 9.8857 0.4435

10 0.7260 −0.8439 3.3569
11 −0.0703 -0.2022 2.2902
12 1.1419 7.9980 0.5621
13 0.8011 4.3951 0.7558
14 −0.4330 0.3932 1.4713
15 0.4097 12.2399 0.4336
16 1.9088 11.6348 0.4356
17 0.1235 −0.7309 4.0056
18 1.2852 2.7802 0.9436
19 −0.8523 −0.6411 1.8889
20 0 0 1.8305

ample, papersp17 and p23: p17 was (by good luck for the authors)
reviewed by reviewersr7 andr10. As noted above, reviewerr7 tends
to be lenient; the same appears to apply (though to a lesser extent)
to reviewerr10. Thus, in the naive approach, paperp17 is likely to
have been ranked higher than merited. Paperp23 was reviewed byr5
and r19. Reviewerr5 seems to be neutral with at most a slight ten-
dency of being harsh, reviewerr19 exhibits a more distinct tendency
towards harshness. Thus, in the two approaches presented here, pa-
per p23 is assigned better scores and jumps from rank 23 in the naive
approach to rank 5 in the linear and to rank 12 in the nonlinearmodel.
The corresponding mean squared errors (wheren = 116 is the total
number of reviews) are 0.4533 for the linear model and 0.1739 for
the nonlinear model. It is not surprising that the additional parame-
tersγi reduce the error.

4 Conclusions

In this paper, we introduced two statistical methods for fairer rating
(and thus, ranking) of scientific papers based on scores of potentially
biased, partially blindfolded reviewers. These methods work well
also in cases where each paper is reviewed only by a small number of
reviewers; in particular, there is no need for every reviewer to assess
each paper. This approach clearly improves on the classical, naive,
yet currently common method of averaging the individual reviewers’
scores. The linear approach can be carried out by means of existing
statistical standard software. The nonlinear approach, however, al-
lows for a more detailed modeling of the behavior of reviewers. On
the other hand, it requires more sophisticated software tools to be
carried out. The authors assume that Section 3 provides sufficient in-
formation for its use, and they offer their help in analyzingdata based
on a data table like Table 3. We applied both methods to real data
from a scientific conference, and pointed out some effects and im-
plications that are visible in the results. This displays their potential
to improve decision-making in peer-reviewed scientific publication
venues.
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