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Abstract. We present an approach to preference modeling and
learning preferences from data based on formal concept analysis. We
consider techniques to derive preferences over attribute subsets from
preferences over objects, including ceteris paribus preferences.

1 INTRODUCTION

If John chooses a strawberry over an apple, would he choose a rasp-
berry over a pear? If so, is it because, for Peter, red berries taste bet-
ter than tree fruit or are there other factors involved? More generally,
given a number of alternatives each described by a set of elementary
features together with a preference relation over these alternatives,
we would like to derive preferences among feature sets that would
explain, at least partially, the observed preferences over individual
alternatives.

A move from a strawberry and a raspberry to red berries is a move
from individual objects to concepts; thus, our aim is to generalize
from preferences over objects to preferences over concepts. A con-
cept can be understood extensionally, through objects it covers, or
intensionally, through attributes that define it. This duality reflects
itself in preferences over object sets and preferences over attribute
sets, so that the latter can be defined in terms of the former. The first
step is then to get from preferences over objects to preferences over
object sets, and for this there are various options extensively studied
in, e.g., preference logics [21]. We pick up two such options and see
what consequences they have for preferences over attribute sets.

In terms of preference logics, attributes can be regarded as atomic
propositions and attribute sets as atomic conjunctions. Thus, what
we present here is a simple version of propositional preference logic
where only preferences over conjunctions of atomic formulae can be
expressed. This limitation allows us to make a link to formal concept
analysis (FCA) [12], through which we develop techniques for learn-
ing preferences from empirical data. FCA provides a wide range of
computational tools, and, despite their often unattractive theoretical
complexity, they are successfully used in practical data analysis [8].

The paper is organized as follows. We start by describing the types
of preferences discussed throughout the paper including two types
of global preferences and ceteris paribus preferences. We proceed
with FCA definitions and then consider each type of preferences sep-
arately providing FCA-based semantics, discussing inference, and
describing methods for learning preferences from data. Finally, we
show a way to take into account the conceptual structure of the data
and thus reduce the learning bias down to a well-defined point.
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2 PREFERENCES IN PREFERENCE LOGICS
In modal preference logics [17, 21], preference relations are modeled
by accessibility relations on possible worlds, which correspond to al-
ternatives being compared. The preference relation is often assumed
to be a preorder, that is, reflexive and transitive. We stick to this as-
sumption and denote this relation by ≤. It can be extended to sets of
possible worlds in several ways, of which we consider two.

In von Wright’s version of preference logic [22], a set Y is pre-
ferred to a set X (notation: X E∀ Y ) if

∀x ∈ X∀y ∈ Y (x ≤ y), (1)

that is, every alternative in Y is preferred to every alternative in X .
The induced relation E∀ is not necessarily reflexive or irreflexive:
reflexivity is violated by a set containing two incomparable alterna-
tives, while {x} E∀ {x} for every single-element set {x}. Since
X E∀ ∅ and ∅ E∀ Y for all X and Y , transitivity is not preserved,
either. However, this is the only way transitivity may fail; by disal-
lowing the empty set, we obtain a transitive relation. Besides, the E∀
relation can be easily transformed into a strict partial order:

X �∀ Y ⇐⇒ X E∀ Y and Y 5∀ X.

A different approach is to state that Y is preferred toX if, for each
alternative from X , Y contains an alternative that is at least as good:

∀x ∈ X∃y ∈ Y (x ≤ y).

We denote this by X E∃ Y . For some contexts, E∃-preferences are
more appropriate than E∀-preferences. Consider the case of a two-
person turn-based game. If X and Y are sets of positions reachable
from the current position in one turn, preferences between X and
Y are E∃-like for the player whose turn it is, since this player has
control over which position from X or Y gets chosen. For the other
player, E∀-preferences are more appropriate.

Preferences over propositions are defined as preferences over their
sets of models. Thus, φ is preferred to ψ if every model of φ is pre-
ferred to every model of ψ (for E∀-preferences) or, for every model
of ψ, there is a “better” model of φ (for E∃-preferences).

With a pinch of salt (ignoring empty sets and inconsistent propo-
sitions), E∃-preferences can be viewed as a relaxation of E∀-
preferences, but both types are global in that propositions are com-
pared w.r.t. all their models. Ceteris paribus preferences put restric-
tions on which models should be taken into account by assuming
“other things being equal” when comparing φ and ψ. We might want
to explicitly specify which other things must be equal. In the ver-
sion of preference logic from [21], this is done by parameterizing the
modal operator corresponding to the preference relation by a set of



propositions Γ. The Γ-ceteris paribus version of X E∀ Y , which we
denote by X EΓ Y , holds if

∀x ∈ X∀y ∈ Y (∀ϕ ∈ Γ(x |= ϕ ⇐⇒ y |= ϕ)→ x ≤ y),

where x |= ϕ means that ϕ is true in x. Thus, it is required that
every alternative from Y is preferred to every alternative from X
that satisfies exactly the same formulae from Γ. Clearly, this is a
relaxation of the requirement specified by (1).

Interestingly, adding the ceteris paribus condition to the definition
of E∃-preferences results in stronger preferences. To say that X E∃
Y holds ceteris paribus, we must find, for each alternative x ∈ X ,
an alternative in Y that is not only at least as good, but that is also
sufficiently similar: it should satisfy exactly the same propositions
from Γ that x does.

In this paper, we consider global E∀- and E∃-preferences and
the ceteris paribus version of E∀-preferences. Our discussion is re-
stricted to rather simple propositions: we state preferences only over
atomic conjunctions and allow only sets of atomic formulae as ce-
teris paribus conditions. Thus, in the ceteris paribus case, we con-
sider preferences of the form φ 4Γ ψ, where φ and ψ are atomic
conjunctions and Γ is a set of atomic formulae. We will work with
φ, ψ, and Γ as with sets of attributes rather than as with logical for-
mulae. The next section introduces formal concept analysis, which is
the framework that we will use here.

3 FORMAL CONCEPT ANALYSIS
We start with a few definitions from FCA [12]. Given a (formal) con-
text K = (G,M, I), where G is called a set of objects, M is called a
set of attributes, and the binary relation I ⊆ G×M specifies which
objects have which attributes, the derivation operators (·)I are de-
fined for A ⊆ G and B ⊆M as follows:

AI = {m ∈M | ∀g ∈ A(gIm)}
BI = {g ∈ G | ∀m ∈ B(gIm)}

AI is the set of attributes shared by objects ofA, and BI is the set of
objects having all attributes of B. Often, (·)′ is used instead of (·)I .
The double application of (·)′ is a closure operator: (·)′′ is extensive,
idempotent, and increasing. Sets A′′ and B′′ are said to be closed.

The left-hand side of Fig. 1 shows a context where objects are
lunch options and attributes are menu items.2 For instance, l3 corre-
sponds to the choice of pumpkin soup, vegetables, and ice cream.

A (formal) concept of the context (G,M, I) is a pair (A,B),
where A ⊆ G, B ⊆ M , A = B′, and B = A′. In this case, A
and B are closed. The set A is called the extent and B is called the
intent of the concept (A,B). A concept (A,B) is less general than
(C,D) if A ⊆ C. The set of all concepts ordered by this generality
relation forms a lattice, called the concept lattice of the context K.

A line diagram of the concept lattice of the context from Fig. 1
is shown in Fig. 2. Nodes correspond to concepts, with more general
concepts placed above less general ones. Two concepts are connected
with a line if one is less general than the other and there is no con-
cept between the two. The extent of a concept can be read off by
looking at the labels immediately below the corresponding node and
below all nodes reachable by downward arcs. The intent consists of
attributes indicated just above the node and those above nodes reach-
able by upward arcs. For example, the top-right node corresponds

2 The example is inspired by the menu of the Parisian restaurant
Derrière: http://derriere-resto.com/restaurant/paris/
derriere/menus/. We use only a small part of the menu, though.
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l1 × × ×
l2 × × ×
l3 × × ×
l4 × × ×
l5 × × ×

l1

l2 l3
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Figure 1. A preference context of lunch options

to the concept of all lunch options with pumpkin soup as a starter
(l1, l3, and l5). The node just below corresponds to its subconcept
({l1, l3}, {pumpkin soup, vegetables}).

l4 l2 l5 l1 l3

ice cream

black carrots pork

chocolate mousse vegetables pumpkin soup

Figure 2. The concept lattice of the context in Fig. 1

It can be seen from this diagram that, if someone wants an ice
cream for a dessert, she will have to have pumpkin soup as a starter
and vegetables as the main dish. This is captured by the notion of
an implication, which is, formally, an expression A → B, where
A,B ⊆ M are attribute subsets. It holds or is valid in the context K
(notation: K |= A→ B) if A′ ⊆ B′, i.e., every object of the context
with all attributes from A also has all attributes from B.

If A′ = ∅, then (G,M, I) |= A → M . We use special notation
for such zero-support implications: A → ⊥. Note that A → ⊥ is a
headless Horn clause, whereas an implication A → B is a conjunc-
tion of definite Horn clauses with the same body.

The implications valid in a context are summarized by the
Duquenne–Guigues basis [13], which has the minimal number of
implications among equivalent implication sets. Nevertheless, it may
be exponential in the size of the context, and determining its size
is a #P-complete problem [16]. Other valid implications can be ob-
tained from this basis using the Armstrong rules [4], which constitute
a sound and complete inference system for implications.

The preference context P = (G,M, I,≤) is defined in [18] as
a context (G,M, I) supplied with a reflexive and transitive (as it is
common in preference logics [21]) preference relation ≤ on G. We
write g < h if g ≤ h and h 6≤ g. The right-hand side of Fig. 1 shows
preferences over lunch options: l1 is better than l4 and l5, but worse
than l2 and l3, while l2 and l3 are incomparable, as are l4 and l5. A



preference context can be regarded as a combination of two formal
contexts: (G,M, I) and (G,G,≤). We use (·)′ for the derivation
operators of (G,M, I) and (·)≤ and (·)≥ for the derivation operators
of (G,G,≤): X≤ (X≥) is the set of all objects that are at least (at
most) as good as all objects from X ⊆ G.

4 MODELING PREFERENCES IN FCA
In Sects. 4.1 and 4.2, we recall (without proofs) results from [18]
concerning preferences based on the relations E∀ and E∃. In Sect.
4.3, we present a new approach to modeling ceteris paribus prefer-
ences.

We define semantics for preferences by describing conditions un-
der which a preference π is said to be valid in a preference context P,
denoted by P |= π. We say that a preference π follows from (or is a
semantic consequence of ) a set of preferences Π (notation: Π |= π)
if, whenever all preferences from Π are valid in some preference con-
text P (Π is sound for P; P |= Π), the preference π is also valid in
P (P |= π). A set Π of preferences (of a certain kind) is said to be
complete for P if, for all preferences π (of this kind), P |= π if and
only if Π |= π. If, in addition, none of the preferences in Π follows
from the other preferences, we say that Π is a preference basis of P.

4.1 Universal preferences
It is possible to summarize E∀-preferences over subsets of G by the
concept lattice of the formal context (G,G,≤). Indeed, X E∀ Y
holds for X,Y ⊆ G if and only if Y ⊆ X≤. Sets X and Y are max-
imal with respect to this property if and only if (X,Y ) is a formal
concept of (G,G,≤). At the same time, if X E∀ Y , then U E∀ V
for every U ⊆ X and V ⊆ Y . Thus, concepts of (G,G,≤) provide
a complete representation of E∀-preferences over object sets.

Having defined preferences over object sets, there is an easy way
to translate the definition into preferences over attribute sets by as-
sociating each attribute set A with the set of objects that have all
attributes from A or, to put it in terms of formal concept analysis,
with A′:

Definition 1. A set of attributes B ⊆ M is universally preferred to
a set of attributes A ⊆M in a preference context P = (G,M, I,≤)
if A′ E∀ B′, i.e.,

∀x ∈ A′∀y ∈ B′(x ≤ y).

Notation: P |= A 4∀ B.

That is, A 4∀ B holds (or is valid) in (G,M, I,≤) if every ob-
ject with all attributes from B is preferred to every object with all
attributes from A. This is precisely the approach used in preference
logics as described in Sect. 2.

It is easy to obtain the following characterization of universal pref-
erences in terms of the derivation operators of the preference context:

Proposition 1. P |= A 4∀ B if and only if B′ ⊆ A′≤.

To give an example, in the preference context from Fig. 1, we have
{pork} 4∀ {vegetables}, since every option with vegetables is pre-
ferred to every option with pork.

Proposition 2. A sound and complete inference system for universal
preferences consists of a single rule:

A 4∀ B
A ∪ C 4∀ B ∪D

,

which allows one to add arbitrary attributes to both sides of a valid
preference.

A universal preference basis of P can be found by representing
universal preferences of P as implications in another formal context.

Definition 2. Let P = (G,M, I,≤) be a preference context. The
universal translation of P is a formal context KP

∀ = (G × G, (M ×
{1, 2}) ∪ {≤}, I∀), where

(g1, g2)I∀m1 ⇐⇒ g1Im,
(g1, g2)I∀m2 ⇐⇒ g2Im,
(g1, g2)I∀ ≤ ⇐⇒ g1 ≤ g2.

Here,m1 andm2 stand for (m, 1) and (m, 2) respectively,m ∈M .
We denote the derivation operators of KP

∀ by (·)∀.
T∀(A 4∀ B), the translation of a universal preference A 4∀ B,

is the implication

(A× {1}) ∪ (B × {2})→ {≤}

of the formal context KP
∀.

Proposition 3. A universal preference A 4∀ B is valid in a prefer-
ence context P = (G,M, I,≤) if and only if its translation is valid
in KP

∀:

P |= A 4∀ B ⇐⇒ KP
∀ |= T∀(A 4∀ B).

The context resulting from the translation has as its objects pairs
of objects of the preference context and contains two copies of each
original attribute; (g1, g2) is associated with the first copy of m if
g1 has m and with the second copy if g2 has m. For example, the
preference {pork} 4∀ {vegetables} valid in the preference context
P from Fig. 1 is translated into {(pork, 1), (vegetables, 2)} → {≤},
which is a valid implication of KP

∀.
The following proposition describes the basis of universal prefer-

ences:

Proposition 4. Let P be a preference context. The set

Σ = {A 4∀ B | (A× {1}) ∪ (B × {2}) is minimal

w.r.t. KP
∀ |= (A×{1})∪ (B×{2})→ {≤}}

is the minimal (in the number of preferences) basis of the universal
preferences valid in P.

In other words, to compute the basis of universal preferences of P,
we need to find minimal (by set-inclusion) attribute sets of KP

∀ that
have ≤ in their closure. Note that this can be done without explicit
construction of KP

∀.

4.2 Existential preferences
In this section, we transfer the definition of E∃-preferences to at-
tribute sets similarly to how it was done for E∀- preferences:

Definition 3. A set of attributes B ⊆M is existentially preferred to
a set of attributesA ⊆M in a preference context P = (G,M, I,≤),
denoted by P |= A 4∃ B, if A′ E∃ B′, i.e.,

∀x ∈ A′∃y ∈ B′(x ≤ y).

Again, we can characterize existential preferences in terms of the
derivation operators of the preference context:



Proposition 5. P |= A 4∃ B if and only if A′ ⊆
S

g∈B′ g
≥.

An example of an existential preference that does not hold uni-
versally in the context from Fig. 1 is ∅ 4∃ {vegetables}: for every
lunch option, there is one with vegetables that is at least as good. On
the other hand, {pumpkin soup, vegetables} is preferred to {black
carrots, pork} both universally and existentially.

Existential preferences generalize implications:

Proposition 6. For a preference context P = (G,M, I,≤)

1. If (G,M, I) |= A→ B, then P |= A 4∃ B.
2. If ≤ is the identity relation and P |= A 4∃ B, then (G,M, I) |=
A→ B.

Proposition 7. A system of three rules

X 4∃ X
,

X 4∃ Y ∪ U
X ∪ V 4∃ Y

,
X 4∃ Y, Y 4∃ Z

X 4∃ Z

is sound and complete with respect to existential preferences.

As universal preferences, existential preferences can also be trans-
lated into implications of a formal context, although the translation
is of exponential size compared to the size the preference context.

Definition 4. The existential translation of a preference context
P = (G,M, I,≤) is a formal context KP

∃ = (G,P(M), I∃), where
P(M) is the power set of M and

gI∃A ⇐⇒ g≤ ∩A′ 6= ∅.

Definition 5. The translation of an existential preference A 4∃ B,
denoted by T∃(A 4∃ B), is the implication

{A} → {B}

of the formal context KP
∃.

Thus, existential preferences are translated into implications with
single-element premises and conclusions (both elements are sets of
original attributes). Such translation preserves the validity:

Proposition 8. An existential preference A 4∃ B is valid in a pref-
erence context P if and only if its translation is valid in KP

∃:

P |= A 4∃ B ⇐⇒ KP
∃ |= T∃(A 4∃ B).

The set {A 4∃ B | A is minimal and B is maximal w.r.t. KP
∃ |=

{A} → {B}} is sound and complete (but possibly redundant) for P.
Clearly, the existential translation of (G,M, I,≤) is infeasible for

all but very small M . However, the representation size can be re-
duced by making use of the dependencies in the data. We address
this issue in Sect. 5.

4.3 Ceteris paribus preferences
We now turn to context-based semantics for the ceteris paribus ver-
sion of universal (E∀) preferences, as described in Sect. 2.

Definition 6. A set of attributes B ⊆M is preferred ceteris paribus
to a set of attributes A ⊆ M with respect to a set of attributes C ⊆
M in a preference context P = (G,M, I,≤) if A′ EC B′, i.e.,

∀g ∈ A′∀h ∈ B′({g}′ ∩ C = {h}′ ∩ C → g ≤ h).

In this case, we say that the ceteris paribus preference A 4C B is
valid in P.

The preference {chocolate mousse} 4{pumpkin soup} {ice cream}
holds in the context from Fig. 1 even though ice cream is preferred
to chocolate mousse neither universally nor existentially.

Definition 7. The ceteris paribus translation of P = (G,M, I,≤) is
a formal context KP

∼ = (G×G, (M ×{1, 2, 3})∪{≤}, I∼), where

(g1, g2)I∼(m, 1) ⇐⇒ g1Im,
(g1, g2)I∼(m, 2) ⇐⇒ g2Im,
(g1, g2)I∼(m, 3) ⇐⇒ {g1}′ ∩ {m} = {g2}′ ∩ {m},
(g1, g2)I∼ ≤ ⇐⇒ g1 ≤ g2.

We denote the derivation operators of KP
∼ by (·)

∼
.

T∼(A 4C B), the translation of a ceteris paribus preference
A 4C B, is the implication

(A× {1}) ∪ (B × {2}) ∪ (C × {3})→ {≤}

of the formal context KP
∼.

This is similar to the universal translation, but here we have three
copies of each original attribute. We associate (g1, g2) with the third
copy of m if either both g1 and g2 have m or neither of them does.

Proposition 9. A 4C B is valid in a preference context P =
(G,M, I,≤) if and only if its translation is valid in KP

∼:

P |= A 4C B ⇐⇒ KP
∼ |= T∼(A 4C B).

Proof. Suppose that P |= A 4C B and (A×{1})∪(B×{2})∪(C×
{3}) ⊆ (g1, g2)∼ for some g1 ∈ G and g2 ∈ G. Then, A ⊆ {g1}′,
B ⊆ {g2}′, and g1Ic if and only if g2Ic for all c ∈ C. The latter
means that {g1}′ ∩ C = {g2}′ ∩ C. Since A 4C B holds in P, we
have g1 ≤ g2 and (g1, g2)I∼ ≤ as required.

Conversely, assume KP
∼ |= (A×{1})∪(B×{2})∪(C×{3})→

{≤}. We need to show that g1 ≤ g2 whenever A ⊆ {g1}′, B ⊆
{g2}′, and {g1}′ ∩ C = {g2}′ ∩ C. Indeed, in this case, we have
(A×{1})∪(B×{2})∪(C×{3}) ⊆ {(g1, g2)}∼ and, consequently,
(g1, g2)I∼ ≤, i.e., g1 ≤ g2.

Definition 8. We say that a ceteris paribus preference A 4C B is
in canonical form if A ∩B = A ∩ C = B ∩ C.

For every preference A 4C B, there is a unique preference in
canonical form equivalent to A 4C B in the sense that it holds pre-
cisely in the same preference contexts:

A ∪ (B ∩ C) 4C∪(A∩B) B ∪ (A ∩ C).

Proposition 10. Let P be a preference context. The set

Π = {A 4C B | (A× {1}) ∪ (B × {2}) ∪ (C × {3}) is minimal

w.r.t. KP
∼ |= T∀(A 4C B) and A ∩B = A ∩ C = B ∩ C}

is sound and complete for P.

Proof. Due to Proposition 9, all ceteris paribus preferences from
Π are valid in P. To see that Π is complete, we consider, without
loss of generality, an arbitrary preference A 4C B in the canon-
ical form. If P |= A 4C B, then the implication T∀(A 4C B)
holds and, therefore, either A 4C B ∈ Π or there are smaller sets
A1 ⊆ A,B1 ⊆ B, and C1 ⊆ C such that A1 4C1 B1 ∈ Π. It is not
hard to see that Π |= A 4C B holds then.



We will not describe an inference system for ceteris paribus pref-
erences similar to those provided by Propositions 2 and 7. Instead,
we give an algorithm that decides whether a preference A 4C B
follows from a set of preferences Π. By replacing A, B, and C in a
valid preference A 4C B by their arbitrary supersets, we get valid
preferences (cf. Proposition 2). The next definition captures prefer-
ences that can be obtained from other preferences in this way:

Definition 9. Let Π be a set of ceteris paribus preferences. Then

Π• = {D 4F E | ∃A 4C B ∈ Π(A ⊆ D,B ⊆ E,C ⊆ F )}.

Note that Π |= Π•. However, not all preferences that follow from
Π are in Π•.

Proposition 11. Let Π be a set of ceteris paribus preferences over
M . For any preference A 4C B in canonical form, we have Π |=
A 4C B if and only if Π• contains all canonical-form preferences
D 4F E such that A ⊆ D,B ⊆ E,C ⊆ F, and M = D ∪E ∪ F .

Proof. Let D 4F E 6∈ Π• be a preference satisfying the conditions
above. Consider a preference context P with only two objects, g1 <
g2, such that {g1}′ = E and {g2}′ = D. The two objects have
the same values for all attributes in F : each has all attributes in E ∩
F = D ∩ F and none of the other attributes in F . The values of all
attributes inM \F = (D∪E)\F are different for g1 and g2. Since
A ⊆ {g2}′, B ⊆ {g1}′, and C ⊆ F , we conclude that P 6|= A 4C

B. Consider an arbitrary P 4R Q ∈ Π. As D 4F E 6∈ Π•, either
P 6⊆ D or Q 6⊆ E or R 6⊆ F . In all these cases, P |= P 4R Q.
Thus, P |= Π, but P 6|= A 4C B. It follows that Π 6|= A 4C B.

For the other direction, suppose that Π 6|= A 4C B. Then, there
is a context P such that P |= Π, but P 6|= A 4C B. This context
must contain two objects, g1 and g2, for which A 4C B fails, i.e.,
B ⊆ {g1}′, A ⊆ {g2}′, {g1}′∩C = {g2}′∩C, but g2 6≤ g1. Denote
D = {g2}′, E = {g1}′, and F = (M \ (D ∪ E)) ∪ (D ∩ E).
Obviously, D 4F E is a canonical-form preference satisfying the
conditions listed in the proposition, but P 6|= D 4F E and, therefore,
Π• cannot contain D 4F E, which concludes the proof.

Proposition 11 paves the way for Algorithm 1, which checks
whether a preference A 4C B is a consequence of the set Π of
ceteris paribus preferences. The algorithm starts by computing the
canonical form of A 4C B and putting the result, A1 4C1 B1, on
a stack: A 4C B follows from Π if and only if A1 4C1 B1 does.
It then tries to find a canonical-form preference D 4F E 6∈ Π•

such that A1 ⊆ D, B1 ⊆ E, C1 ⊆ F , and M = D ∪ E ∪ F . We
know from Proposition 11 that Π 6|= A1 4C1 B1 and, consequently,
Π 6|= A 4C B, if and only if such a preference can be found. The al-
gorithm searches for it in a depth-first manner, by replacing the first
preference D 4F E on the stack with three extensions adding an
arbitrary attribute from M \ (D ∪E ∪ F ) to either of D, E, and F .
Note that the resulting preferences are still in canonical form. On the
other hand, if we add the same attribute to exactly two of D, E, and
F , the resulting preference will not be in canonical form. By adding
the same attribute to all the three sets, we obtain a weaker canonical-
form preference, which we we can ignore, since it is not contained in
Π• only if neither of the three other extensions is. If, at some point,
the algorithm comes across a preference D 4F E ∈ Π•, it simply
removes it from the stack, because all its extensions must also be in
Π•. Thus, if the stack becomes empty, we know that all canonical-
form preferences of the sort required by Proposition 11 are in Π• and
conclude that Π |= A 4C B. If we find a preference that cannot be

Algorithm 1 CETERIS PARIBUS CONSEQUENCE(A 4C B,Π)

Input: A ceteris paribus preference A 4C B and a set Π of ceteris
paribus preferences (over a universal set M ).

Output: true, if Π |= A 4C B; false, otherwise.

S := [A ∪ (B ∩ C) 4C∪(A∩B) B ∪ (A ∩ C)] {stack}
repeat

D 4F E := pop(S)
if D 4F E 6∈ Π• then

X := M \ (D ∪ E ∪ F )
if X = ∅ then

return false
choose m ∈ X
push(D ∪ {m} 4F E,S)
push(D 4F E ∪ {m},S)
push(D 4F∪{m} E,S}

until empty(S)
return true

extended with additional attributes and is not in Π•, we conclude that
Π 6|= A 4C B.

Algorithm 1 is exponential in |M | in the worst case, but there is
little hope to do better. The reason is that, although Proposition 10
makes it possible to represent ceteris paribus preferences as impli-
cations, or Horn formulae, these Horn formulae are not sufficient to
generate the theory implied by the preferences: we must add the dis-
junctions ¬mi ∨ ¬mj ∨ mk for different i, j, k ∈ {1, 2, 3} and,
crucially, m1 ∨m2 ∨m3 for each m ∈ M . The last disjunction is
not a Horn clause, which makes inference hard. However, the algo-
rithm is linear in |Π|, which makes it efficient in applications where
the language for describing preferences (and, thus, the number of at-
tributes) is fixed and small compared to the number of preferences
that need to be taken into account.

5 REDUCING BIAS

The presented approach to deriving preferences assumes that the at-
tribute combinations in the context are the only ones that matter. In
practice, the data may cover only a small fraction of possible combi-
nations. Derived preferences hold in the data, but may not hold in the
entire domain, being biased towards the observed part of the data.

In our lunch context, {pork} 4∀ {vegetables}, but every option
with pork there comes with chocolate mousse. It may well be that
the subject does not like the combination and the true preference is
weaker: {pork, chocolate mousse} 4∀ {vegetables}.

In this section, we outline a conservative approach to preference
learning, which separates knowledge about preferences from knowl-
edge about the structure of the underlying context and makes it pos-
sible to reduce bias down to a certain well-defined point. We start
by extending the definition of semantic consequence to cover both
implications and preferences under the same hood. If H is a set of
implications over M and Π is a set of preferences (of a certain kind)
over subsets of M , we say that π ∈ Π follows from (or is a seman-
tic consequence of ) H ∪ Π (notation: H ∪ Π |= π) if, whenever all
preferences from Π are valid in some preference context P over M
satisfying all implications from H (i.e., P |= Π and P |= H), the
preference π is also valid in P (i.e., P |= π).

Definition 10. The Horn bias induced by a preference context P =
(G,M, I,≤) is the set of implications that hold in (G,M, I).



The Horn bias induced by a preference context is simply the im-
plicational (i.e., Horn) theory behind its “non-preferential” part.

Definition 11. LetH be the Horn bias induced by P = (G,M, I,≤)
and Π be the set of all preferences (of a certain kind) that hold in
P. We say that a preference π ∈ Π is Horn-biased in P if there is
Π1 ⊆ Π \ {π} such that Π1 6|= π andH ∪Π1 |= π.

Intuitively, a Horn-biased preference is one that can be deduced
from other—weaker—preferences given that we know the Horn the-
ory behind the data, but not without this additional knowledge. In the
example above, {pork} 4∀ {vegetables} is Horn-biased, since it is a
consequence ofH ∪ {{pork, chocolate mousse} 4∀ {vegetables}},
where H is the set of all implications valid in the context including
{pork} → {chocolate mousse}.

For universal and existential preferences, the Horn bias can be
avoided by considering only preferences over closed attribute sets.
Any preference of the form A′′ 4∀ B′′ or A′′ 4∃ B′′ is guaranteed
not to be Horn-biased, but all other universal and existential prefer-
ences are Horn-biased. A′′ and B′′ are concept intents of (G,M, I);
thus, unbiased preferences are preferences over formal concepts.

Technically, there are at least two ways to achieve an unbiased
representation of universal preferences without constructing the ba-
sis from Proposition 4. One is to build the Duquenne–Guigues basis
of (G,M, I), transform its implications into background knowledge,
and then build the basis of KP

∀ relative to this background knowledge
(see [18] for more details). The other is to build the so-called minimal
hypotheses for ≤ in KP

∀ [11]. The results of the two approaches are
identical: it is the minimal basis of unbiased universal preferences.

If we want to keep preferences unbiased, but be able to derive bi-
ased preferences, too, we can do this using implications and a hybrid
inference system that combines the Armstrong rules [4] for implica-
tions, the rule from Proposition 2, and three additional rules:

X → ⊥
∅ 4∀ X, X 4∀ ∅

,
X → Y, X ∪ Y 4∀ Z

X 4∀ Z
,

X → Y, Z 4∀ X ∪ Y
Z 4∀ X

.

For existential preferences, an unbiased representation is actually
easier to compute than a biased one: in this case, not all attribute sets
are needed for the translation, but only concept intents of (G,M, I).

Definition 12. The conceptual existential translation of a preference
context P is a formal context CP

∃ = (G,B(G,M, I), I∃), where
B(G,M, I) is the concept set of (G,M, I) and

gI∃(A,B) ⇐⇒ g≤ ∩A 6= ∅.

For the lunch example, this translation produces a context with
fifteen attributes corresponding to the concepts shown in Fig. 2 com-
pared to 64 attributes produced by the existential translation.

Definition 13. The conceptual translation of an existential prefer-
ence A 4∃ B, denoted by TC

∃ (A 4∃ B), is the implication

{(A′, A′′)} → {(B′, B′′)}

of the formal context CP
∃.

The conceptual translation preserves the validity of existential
preferences and provides another way to summarize them:

{A 4∃ B | CP
∃ |= {(A′, A)} → {(B′, B)} and B 6⊆ A}

is a complete set of existential preferences relative to the implica-
tions of (G,M, I). A hybrid inference system for implications and
existential preferences includes Armstrong rules [4], the rules for ex-
istential preferences from Proposition 7, and the rule

A→ B

A 4∃ B
.

For ceteris paribus preferences, bias can be reduced even further.

Definition 14. We call the expression [A,B]C ⇒ D[E,F ] a doubly
conditional functional dependency and say that it holds in (G,M, I)
if, for every g, h ∈ G such that g ∈ A′, h ∈ B′, and {g}′ ∩ C =
{h}′ ∩ C, we have g ∈ E′, h ∈ F ′, and {g}′ ∩D = {h}′ ∩D.

This generalizes both implications and conditional functional de-
pendencies from [9]. Thus, the induced bias, which we call the 2CFD
bias, includes the Horn bias.

Definition 15. The 2CFD bias induced by a preference context
P = (G,M, I,≤) is the set of doubly conditional functional de-
pendencies that hold in the formal context (G,M, I).

Doubly conditional functional dependencies are in one-to-one cor-
respondence with implications of the context obtained from KP

∼ by
removing the ≤ attribute. To avoid the 2CFD bias, we should con-
sider only preferences translated into implications of KP

∼ whose left-
hand sideX is minimal w.r.t.X∪{≤} being a concept intent of KP

∼.
These correspond to minimal hypotheses for ≤ [11].

6 CONCLUSION
We have proposed a formalism based on concept lattices for mod-
eling several types of preferences, including preferences that hold
only ceteris paribus and showed how such preference models can
be learned from data. Our approach may seem limited for, taken
literally, it is only concerned with preferences over conjunctions of
boolean variables; even negations of variables are not covered. Com-
pare this to other approaches, such as cp-theories as defined in [23].
In this framework, one works with a set of variables V , each of which
has an associated set of values. A conditional preference is a state-
ment of the form u : x1 > x2[W ], where u is an assignment to
U ⊆ V , x1 and x2 are different assignments to some X ∈ V , and
W is a subset of V \ (U ∪ {X}). Such preference is interpreted as
follows: between two alternatives satisfying u, the one with X = x1

is preferred to the one with X = x2 provided that they agree on all
other variables with a possible exception of those in W . This may be
regarded as a generalization of CP-nets [6] and TCP-nets [7].

To model such preferences in our framework, we can build a pref-
erence context whose attribute set M consists of expressions of the
form X = x, where X ∈ U and x ranges over possible values of
X . For the boolean case, this would mean adding a negated copy for
each attribute. Then, a strict conditional preference u : x1 > x2[W ]
would have the following weak counterpart in our framework:

u ∪ {X = x2} 4{M\W} u ∪ {X = x1}.

To express strict conditional preferences, we can start with a strict
preference relation over objects. On the other hand, the language of
conditional preferences only allows preferences of a single variable,
whereas, with our approach, we can express (and learn from data)
more general preferences such as

u ∪ {X = x2, Y = y2} 4{M\W} u ∪ {X = x1, Y = y1}.



Furthermore, for variables with ordinal values, we could use at-
tributes of the form, e.g., x1 ≤ X ≤ x2 instead of just X = x.
In FCA, this is done by scaling so-called many-valued contexts, in
which attributes are not necessarily boolean [12]. Also, the ceteris
paribus conditions in the translated context from Definition 7, which
are specified through attributes from M × {3}, could be customized
to specify relations other than equality. This would make it possi-
ble to express preferences like the following: “Between two ways of
travel, I prefer a cheap one provided that it is at least as fast as the
other.” We leave a thorough treatment of these issues and a proper
comparison to other approaches to preference modeling for further
research.

We also plan to develop algorithms for learning preferences from
queries [2]. Such algorithms exist, e.g., for CP-nets [15]. Since, in our
framework, preferences can be translated into Horn clauses, it might
be possible to adapt the output-polynomial algorithm for learning
Horn theories from [3] (adaptation is needed, because the transla-
tion is not surjective, i.e., not all Horn clauses over a given set of
variables correspond to preferences). However, this algorithm uses
equivalence queries, which are hard to answer. An alternative ap-
proach is a similar technique from FCA, called attribute exploration
[10, 19, 20], which only uses queries on the validity of implications
(even though, in theory, the number of such questions may be expo-
nentially large). Note that, with this approach, the user is not asked to
specify preferences between two given examples, but rather to con-
firm or reject a stated preference. When rejecting a preference, the
user must point out two objects contradicting this preference. A pre-
cise specification of such query learning algorithm and its computa-
tional complexity are a matter of further research.

In application to real-life data analysis, it may be useful to intro-
duce some statistical considerations into the theory presented here.
One obvious approach is to replace the semantics based on implica-
tions by one based on association rules [1], thus, allowing exceptions
in derived preferences, but making sure that these preferences are
supported by a sufficiently large volume of data. On the other hand,
methods for pruning concept lattices by selecting only the most in-
teresting (in some sense) concepts [14, 5] may be of value in deriving
“unbiased” preferences from Sect. 5, which are interpreted as prefer-
ences over concepts.
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